WOCOMAL

Varsity Meet \#2

December 4, 2002

Thocolvisi.

December 4, 2002
Varsity Meet\#2

ROUND\#1: Parallel Lines \& Polygons

1. In the diagram, line \boldsymbol{m} is parallel to line \boldsymbol{n} and $\overline{P K}$ bisects $\angle Q P R$.

Compute the measure of $\angle P K R$.

2. The area of parallelogram ABCD is 24 , and M and N are midpoints of its sides. Points which appear to be collinear are. Find the area of $\triangle P O Q$.

3. A regular polygon has N sides. If the number of sides increases by 7 , then the measure of each angle increases by 21°. Find N .

Answer here: 1. (1 pt.) \qquad
2. (2 pts.) \qquad
3. (3 pts.) \qquad
St. John's, Bromfield, Worcester Acad.

Whocolnys.

December 4, 2002
Varsity Meet\#2

ROUND\#2: Algebra 1

1. Each day Scott earns $\$ 3$ for doing his chores or earns $\$ 5$ for doing them exceptionally well. After ten days doing his chores, Scott has earned a total of $\$ 36$. On how many of those days did Scott do his chores exceptionally well?
2. If the solution to this system is of the form $(x, y)=(a,-a)$, find a.

$$
\begin{aligned}
& \frac{2 x}{3}+\frac{y}{7}=-11 \\
& \frac{x}{7}-\frac{y}{3}=-10
\end{aligned}
$$

3. Albert is A years old and John is J years old. How many years ago was John C times as old as Albert?

Answer here:

1. (1 pt.) __days
2. (2 pts.) \qquad
3. (3 pts.) \qquad years

Bancroft, Bartlett, St. John's

December 4, 2002

ROUND\#3: Circles \& All Related Theorems

1. In terms of π, compute the area of a sector having radius 6 and angle 100°.
2. The sides of a triangle have lengths 8,12 , and 14 . Find the distance from the midpoint of the longest side to the point at which this side is tangent to the circle inscribed in the triangle.
3. $\overline{P U}$ is a secant thru center O and $\overline{P R}$ is tangent at Q. The measures of arcs $\overparen{S F}, \overparen{F Q}, \overparen{T U}$, and $\overparen{U S}$ are $x, 2 x, 4 x, 8 x$, respectively. Find the degree-measure of $\angle U P R$.

Answer here:

1. (1 pt.) \qquad
2. (2 pts.) \qquad
3. (3 pts.) \qquad degrees

Burncoat, Hudson, Assabet

Tho Colltar

December 4, 2002
Varsity Meet\#2

ROUND\#4: Sequences \& Series $\quad-\quad \ll$ No Calculators >>

1. $\left\{a_{n} \mid n=1,2,3, \ldots\right\}=\{-8,-2, \ldots\}$ is an arithmetic sequence. Compute a_{336}.
2. This continued radical converges to a number. Find that number.

3. Let $S_{1}=1, S_{2}=2+3=5, S_{3}=4+5+6=15, S_{4}=7+8+9+10=34, \ldots$, where S_{N} is the sum of the next N counting numbers not already used. Compute S_{17}.

Answer here: 1. (1 pt.) \qquad
2. (2 pts.) \qquad
3. (3 pts.) \qquad
Bartlett, Northbridge, Algonquin

WMocollys.

December 4, 2002
Varsity Meet\#2
ROUND\#5: Matrices \& Systems of Equations - << No Calculators >> 1. The inverse of $\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}$ equals $\frac{1}{7} . \begin{array}{ll}a & b \\ c & d\end{array}$. Write the matrix $\begin{array}{ll}a & b \\ c & d\end{array}$.
2. Solve this system for all ordered pairs (x, y).

$$
\begin{gathered}
x^{2}-2 x y+y^{2}=25 \\
4 x+y=15
\end{gathered}
$$

3. The determinant $\left|\begin{array}{lll}1 & x & y \\ 1 & y & z \\ 1 & x & z\end{array}\right|$ can be expanded and then factored into the product of two binomials. Write this factored form.

Answer here:

1. (1pt.) $\begin{array}{ll}a & b \\ c & d\end{array}=-$
2. (2 pts.)
3. $(3 \mathrm{pts}).(\square) \cdot(\square)$

Douglas, Shrewsbury, Holy Name

Team Round:

1. In a plane, the degree measures of the interior angles of a convex hexagon are all integers, no two of which are equal. If A is the degree measure of the third largest angle, find the minimum possible measure for A .
2. How many solutions does this equation have? $\quad||||x-1|-2|-3|-2|=1$
3. $\overline{P E}$ is a diameter of a circle centered at O. Two circles are drawn with $\overline{P O}$ and $\overline{O E}$ as diameters. A fourth circle of radius 10 cm . is tangent to the three circles, as shown. Compute the diameter $P E$.

4. If reduced $\frac{p}{q}=\frac{1}{10}+\frac{2}{10^{2}}+\frac{3}{10^{3}}+\frac{4}{10^{4}}+\ldots$ where the $N^{t h}$ term of the infinite sum is $\frac{N}{10^{N}}$, compute $p+q$.
5. If $A=\begin{array}{ll}2 & -3 \\ 4 & -5\end{array}$ and $B=\begin{array}{cc}-8 & 6 \\ -4 & -2\end{array}$, compute X if $(A \cdot X) \cdot A=B$.
6. Expand and factor: $\left|\begin{array}{lll}0 & a & b \\ c & 0 & a \\ b & c & 0\end{array}\right|+\left|\begin{array}{lll}0 & a & b \\ a & 0 & c \\ b & c & 0\end{array}\right|$.
7. Find all ordered pairs (x, y) which solve this system.

$$
\begin{gathered}
14 x+3 y=x y \\
7 x+18 y=-5 x y
\end{gathered}
$$

8. An old circular clock and a new digital clock keep exactly the same time in a 12-hour cycle. What is the reading on the digital clock [$\mathrm{hh}: \mathrm{mm}: \mathrm{ss}$] when the two hands of the circular clock are together between 3 and 4 o'clock?
[Six digits, please.]
9. Find the largest counting number A for which x and x^{3} leave the same remainder when divided by A for any integer $x>5$.

Auburn, St. John's, Auburn, Auburn, Bromfield, QSC, Notre Dame, Quaboag, Hudson

Thucolnsin

December 4, 2002 Team Round Varsity Meet\#2

2 Points Each

Answers must be exact or rounded to three decimal places, except where stated otherwise.

Answers here \downarrow :

1. \qquad
2.
3. \qquad
4. \qquad
5. $\quad X=-\quad-$ - -
6. \qquad
7. \qquad
8. [__ : __ $\left.: ~ _\ldots\right]$
9. \qquad

School: \qquad
Team\#: \qquad

Players' Names \downarrow :
\#1: \qquad
\#2:
\#3:
\#4:
\#5:

WOCOMAL Answers Varsity Meet \#2 December 4, 2002

R\#1: 1. 10°
2. 27
3. $\mathrm{N}=8$

R\#2: 1. 3 days
2. $a=-21$

Team: 1. 93°
3. $\frac{C A-J}{C-1}$
2. nine

R\#3: 1.10π
3. 60 cm .
2. 2
3. 50°
4. 91

R\#4: 1. 2002
2. 7
5. $X=\begin{array}{cc}1 & 3 \\ -2 & 4\end{array}$
3. 2,465

R\#5: 1. $\begin{array}{cc}3 & 1 \\ 1 & -2\end{array}$
2. $(2,7)$ and $(4,-1)$ [Need both.]
6. $b \cdot(a+c)^{2}$
3. $(x-y) \cdot(y-z)$ or $(z-y) \cdot(y-x)$
7. $(0,0)$ and $(-3,7)$ [need both]
8. [03: $16: 21]$
[six digits in order]
9. $\mathrm{A}=6$

WoCoMaL

V2-Solutions

Dec. 4, 2002
Round\#1 1. The other angles at Q and R are 40° and 60°. So, $m \angle Q P R=40+60=100$. Thus, $m \angle R P K=50$ and $m \angle P K R=10$.
2. From "midpoints" and parallels, it should be clear about areas that
$(P O Q)=(M A Q)+(M A B N O)+(N B P)=(M D C)+(M A B N O)+(N C D)=(A B C D)+(O C D)$.
But, $(O C D)=\frac{1}{8}(A B C D)=\frac{1}{8}(24)=3$. So, $(P O Q)=24+3=27$.
3. Solve $\frac{((N+7)-2) \cdot 180}{N+7}=21+\frac{(N-2) \cdot 180}{N}$ to obtain $N=8$.

Round\#2 1. Suppose he did his chores on C days and did them well on W days. Then $3 C+5 W=36$ and $C+W=10$. This means $W=3$.
2. There is too much info, but it is all consistent. The easiest way is to substitute $(a,-a)$ into one equation, and find $a=-21$.
3. Suppose the answer was N years. Then, $J-N=C(A-N)$ and $N=\frac{C A-J}{C-1}$.

Round\#3 1. Area $=\frac{100}{360} \times \pi \times 6^{2}=10 \pi$.
2. From the figure,
$(8-t)+(14-t)=12$ and $t=5$.
So, $M A=\frac{1}{2}(14)-t=7-5=2$.

14
3. Semicircle $\overparen{U S F}$ measures $8 x+x=9 x=180$. So, $x=20$. This means that $m \overparen{F Q}=40$ and $m \widetilde{Q U}=140$. So, $m \angle P=\frac{1}{2}(140-40)=50$.

Round \#4 1. $a_{1}=-8$ and $d=6$. So, $a_{336}=a_{1}+335 d=2002$.
2. Call the radical R, and find a duplicate of itself within itself. So, $R=\sqrt{63-2 R}$. The only positive solution is $R=7$.
3. The number of numbers used from S_{1} to S_{16} is $1+2+3+\ldots+16=\frac{16 \times 17}{2}=136$. So, $S_{17}=137+138+\ldots+153=2465$.
Round\#5 1. $\left|\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right|^{-1}=\frac{1}{-7}\left|\begin{array}{cc}-3 & -1 \\ -1 & 2\end{array}\right|=\frac{1}{7}\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$. So, $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=\left|\begin{array}{cc}3 & 1 \\ 1 & -2\end{array}\right|$.
2. $x^{2}-2 x y+y^{2}=25$ becomes $x-y= \pm 5$. Now solve each line with $4 x+y=15$ to obtain the results $(2,7)$ and $(4,-1)$.
3. $\left|\begin{array}{lll}1 & x & y \\ 1 & y & z \\ 1 & x & z\end{array}\right|=1 \cdot\left|\begin{array}{ll}y & z \\ x & z\end{array}\right|-1 \cdot\left|\begin{array}{ll}x & y \\ x & z\end{array}\right|+1 \cdot\left|\begin{array}{ll}x & y \\ y & z\end{array}\right|=y z-y^{2}-x z+x y=(z-y)(y-x)$.

Team 1. Suppose the angles are $X<Y<Z<A<B<C$. A will be as small as possible if B and C are as large as possible. $C=179$ and $B=178$. Then, $X+Y+Z+A+178+179=720$ or $X+Y+Z+A=363$. Since A is now the largest of these four, A will be the smallest it can be, the closer the others are to A.
$\frac{363}{4} \approx 91$. So, $X=89, Y=90$, and $Z=91$ are the largest these three can be and still be less than $A=93^{\circ}$.
2. Some one on the team must have a graphing calculator with solver; nine solutions.
3. From the figure, $y+10=2 x$ and $x^{2}+y^{2}=(x+10)^{2}$, and the only useful solution is $x=15$.
So, $P E=4 x=60 \mathrm{~cm}$.

4. A trick here is to notice that the infinite series is itself a series of infinite series. ie. $\frac{1}{10}+\frac{2}{10^{2}}+\frac{3}{10^{3}}+\frac{4}{10^{4}}+\ldots=\frac{1}{10}+\frac{1+1}{10^{2}}+\frac{1+1+1}{10^{3}}+\frac{1+1+1+1}{10^{4}}+\ldots$ $=0 . \overline{1}+0.0 \overline{1}+0.00 \overline{1}+0.000 \overline{1}+\ldots=\frac{1}{9}+\frac{1}{90}+\frac{1}{900}+\frac{1}{9000}+\ldots=\frac{\frac{1}{9}}{1-\frac{1}{10}}=\frac{10}{81}$. So, $p+q=91$.
5. $X=A^{-1} \cdot\left(B \cdot A^{-1}\right)=\frac{1}{2} \cdot\left|\begin{array}{cc}-5 & -4 \\ 3 & 2\end{array}\right| \cdot\left|\begin{array}{cc}-8 & 6 \\ -4 & -2\end{array}\right| \cdot \frac{1}{2} \cdot\left|\begin{array}{cc}-5 & -4 \\ 3 & 2\end{array}\right|=\left|\begin{array}{cc}1 & 3 \\ -2 & 4\end{array}\right|$.
6. Just do it.
7. With solver, it is easy. Without: $(0,0)$ should be obvious. But to catch all solutions, substitute $14 x+3 y$ for $x y$ in 2nd equation. Simplify to obtain $-7 x=3 y$, use this to substitute to eliminate a variable and find $(-3,7)$.
8. First find the angle α thru which the hour hand turns past 3 o'clock. Since the minute hand moves 12 times as fast, $90+\alpha=12 \alpha$ and $\alpha=\frac{90}{11}$ degrees. $1^{o}=\frac{1}{6}$ minute. So, α represents $\frac{90}{11} \times \frac{1}{6}=\frac{15}{11}=1 \frac{4}{11}$ minutes past 15 minutes past 3 o'clock. We thus know that the hour will read 03 and the minute will read 16. To obtain the seconds, convert the remaining $\frac{4}{11} \times 60=21.8$; but the .8 will not show. The answer is $03: 16: 21$.
9. x is an integer, and x^{3} and x both have the same remainder upon division by some number A if and only if their difference $x^{3}-x$, which always factors into $(x-1)(x)(x+1)$, always contains three successive integers. These three will always contain at least one factor of 2 and one factor of 3 , making it divisible by 6 . And 6 is the only higher divisor about which this claim can always be made.

